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ABSTRACT

The most likely possibilities of several spectroscopic
methods for measurement of temperature and concentration
profiles in a gas have been studied for possible application
to an experimental hypersonic ramjet, The requirements and
conditions of the ramjJet restrict the solution of the meas-

-urement problem to a narrower range than would be considered

for laboratory applications., The barriers to direct appli-
cation of existing methods have been analyzed and new
varlations of these methods that may overcome these barriers
have been devised., The discrepancy between availlable knowl-
edge and that required by the new methods has been evaluated,
the research needed to close the gap between them determined,
and the effort lnvolved estimated. Spectroscopic instrument
technology is generally avallable for the optical measure-
ments described in thils report,
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POSSIBLE TECHNIQUES FOR OPTICAL MEASUREMENT OF
TEMPERATURE AND CONCENTRATION PROFILES IN A SUPERSONIC RAMJET

By b. Krakow, R. H. Tourin, and G. J. Penzias

SUMMARY
Soectroscopic methods have been used in the past to
measure temperature profiles in hot gases in the research

laboratory, and to measure combustion gas composition in situ.
In the present work, we have studied the most likely possi-
bilities among these methods for measurement of temperature
profiles and composition profiles in an experimental hyper-
sonic ramjet. Thils report discusses several such methods
which illustrate techniques that are potentially applicable
to the ramjet. The requirements and conditions of the ramjet
restrict the solution ¢f the measurement problem to a
narrower range than wculd be considered for laboratory
apvplications. We have analyzed the barriers to direct
application of these methods to an operating ramjet, and have
devised new variations of the methods that are potentially
capable of overcoming these barriers. The discrepancy
between available knowledge and that required by the new
methods has been evaluated, the research needed to close the
gap between them determined, and the effort involved
estimated. Spectroscopic instrument technology is generally
available for the optical measurements described in this
report.

I. INTRODUCTION

Optical methods of gas temperature measurement are
desirable for dynamic systems, because they do not disturb
the system. Moreover, they may be the only feaslble methods
if the temperature is very high or the specimen 1lnaccessible
to sensing probes, However, in optical measurements of a gas
with a temperature gradient along the line of sight, the
temperature at a particular point cannot generally be deter-
mined optically without simultaneous consideration of the
thermal structure of the entire optical path.

At present, there is no fully developed and tested
optical method for measuring temperature and concentration
profiles of the inhomogeneous hot gases (i.e. hot gases



having gradients of temperature, pressure, and/or composition)
in a supersonic ramjet. In attempting to obtain one, two
possible approaches are (1) the adaptation of methods used

to obtain profiles of different types of hot gas systems and
(2) extension of techniques for studying homogeneous gases
with properties similar to those of the ramjet. We have
explored both these approaches. In Section IIA methods are
described that have been used for measuring gas temperature

or composition profiles, and the barriers to their employment
in ramjet studles are explained. Section IIB presents tech-
niques for analyzing homogeneous gases that have possibilities
for extension to the inhomogeneous case., Availability of
instrumentation is discussed in Section IIC. Section III
presents a number of 1ldeas for adapting techniques described
in Section II to the ramjet problem, Section IV discusses
research that is needed to ascertain the practicability of

the 1deas in Section III and to pave the way for their appli-
cation,

II. OPTICAL TECHNIQUES FOR STUDY OF HOT GASES

A, Inhomogeneous Gases

Three optical technlques have been used for extraction
of temperature profiles of thermally inhomogeneous hot gases,
They are:

1 Spectral scanning along a single line of sight.

2 Spatial scanning at a single wavelength.,

3 Optical isolation of a local region in the 1line of
sight.

(1) Spectral Scanning

Figure 1 shows a specimen as 1t 1is considered for
line of sight spectral scanning. Spectroscopic measurements
are made of the radiation that 1s emitted and transmitted
along a line of sight through the body defined by the arrow
I. The temperature profile along this line of sight 1s
calculated from the spectroscopic measurements.

When temperature gradients exist in a gas, 1t 1is
possible to consider the gas to consist of a series of zones,
each of which 1is isothermal within the precision of measure-
ment, If the gradients are steep the reglions would have to
be small, but, in principle, such a divisilon always can be
made, If we number these zones serially from 1 to n, with
zone 1 nearest the detector, the irradiance of the detector,
H(lJ), by radiation of wavelength X g is given (ref. 1) by
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Schematic for spectrocscoplc method of temperature
profile mecasurements,




equation (1)

n

Ha() =Y w0y [Faogyp) =700 ] . (1)

i=1

Physically, ?i(xj) is the transmittance of the section of
the sample, composed of zones 0-1, and Wbm(xJ,Ti) is the

spectral emittance of a blackbody at T1 and XJ’ where Ti is
the temperature of the 1 zone.

For an 1sothermal temperature profile, n = 1, and
equation (1) therefore contains only one transmittance
?()J), provided that the optical path outside the hot gas

sample 1is free of absorbing gas, i.e. the path is evacuated
or flushed with a non-absorbing gas so that ?6(13) =1,

Moreover, ?(xj) can be measured directly, as can,Hm(xJ).
Equation (1) then reduces to

HOg) = 0T [1-700) ] . (1a)

Equation (la) has the form of Kirchhoff's law, It can be
solved for the only remaining variable wbm()J,T) from which

the temperature can be determined., This is the emlssion-

absorption method of temperature measurement, If equation
(1a) 1s applied to a non-isothermal system, the wavelength
dependent result is a weighted average of the temperatures
in the sample with different weighting at each wavelength.

In applying equation (1) to a non-isothermal tem-
perature profile, spectral emittance is measured at n
different wavelengths, having n different sets of values of
Fi()J). This yields n independent simultaneous equations

for calculating the n temperatures,
The infrared transmittances that appear in equa-

tion (1) are themselves somewhat temperature-dependent.
Moreover, of the n transmittances that must be obtained,

only one [Fh()J)] can be measured directly. Therefore,




solution of equation (1) requires some a priori knowledge
of the transmittances of the molecular species comprising
the hot gas specimen, particularly a knowledge of how they
vary with temperature. This knowledge may take the form of
empirical data, theoretical formulas, or a combination of
these. Once such information 1s available, the system of
irradiance equations, equation (1), can be solved for the
thermal structure of the specimen. Developed and tested
iterative procedures for carrying out this solution are
reported in references 2 and 3.

In applying this method to a hydrogen burning ram-
jet, the first problem is the cholce of a good working mole-
cule, The strongest infrared absorber present would be water
vapor and this would not absorb very strongly in specimens of
the size of the ramjet (see Appendix) unless (1) measurements
are made at wavelengths where absorption is strong near the
band center (introducing the problem of interference due to
atmospheric water vapor absorption) and (2) the spectral slit
widths are small. Meeting these requirements would involve
eliminating atmospheric interference along the optical path
and using a high resolution spectrometer. Moreover, this
method has been used only when composition was a known
function of temperature, not when the two are independent
as they may be in the ramjet.

(2) Spatial Scanning

Figure 2 depicts the same specimen as figure 1 with
the parameters that are useful for analysis of a spatial
scan of its spectral radiance and transmittance., Such
measurements are used extensively on optically thin plasmas,
i.e. plasmas in which photons emitted from the inner regions
are not absorbed before reaching the outer boundary.

a, Spatial scanning of optically thin cylindric-
ally symmetric specimens.

Experimentally a lateral intensity profile is
obtained, giving H(x), the spectral radiance in the y direc-
tion at a distance x from the yz plane (in energy per unit
time, unit area perpendicular to the y direction, unit
frequency interval and unit solid angle) , At wavelengths
where the specimen is optically thin, the brightness per
unit depth (called "emission coefficient" by some authors)
f(r) at the distance r from the origin (in energy per unit
time, unit volume, unit frequency interval and unit solid



=== X

/ . _’:}/:A - \ ) DETECTOR
, Yo)
x r
R
e = 4

Fig. 2 Schematic for spatial scanning method of temper-
ature profile measurement.




angle) 1is related to the spectral radiance from the plasma
column of length 2 Yo and cross section A X A Z

+y°
H(X)AxAz-y f(r) AXAyAZ .
Doaadme ~trar A tnfPinitalyry amall valuiima alamanta. and hvu
L AL VYA Y Alid Al bLVeLy o S4B ¥ W e WAL AW AL War — & ~o
symmetry:
yO
Hx) = 2] f(r)ay
0
1
R2—x2)5
0
From the substitution y = (r2 - x‘?)%
T (r)
f(r) r dr
H(x) = 2 . (2)
i (r® - x%)?

By using Abel's transformation (for a proof see ref. 4,
page 177)

R

1 HY (x) 4
f(r) = -3 Ir (xa_rz)){% . (3)

The boundary radius R of the source (H = O for
x > R) and the x axis are divided into N equal increments of
length A, The data for the inversion are the radiances
measured at x = O, .. K, .. (N-1) in units of A.



xk = K A, rn = N A, R = N A

An abbreviated notation is used (HO, Hes ooo L5 fk), thus

Ho means the measured radiance across the origin. It has to

be remembered, that H values are integrated over the optical
path, and that the f values obtained by the inversion pro-
cess refer to optical path unity.

Numerous authors (refs. 5 to 7, for example) have
described mathematical procedures for extracting the profile
of £f(r) from the measured H(x) profile. Generally, in order
to solve equation (3), an analytically integrable function
J(x) 1s fitted to the Hk values obtained as a set of numeri-

cal data, The various methods differ by the way this 1is done,

Many workers have preferred not to use the Abel
transformation, Instead, they have carried out numerical
solutions of equation (23 treating f(r) as a step function
of the radius (refs. 8 and 9)

b. Spatial scanning of cylindrically symmetric
specimens with self-absorption.

In flames and many plasmas, self-absorption cannot
be neglected at any wavelength at which radiance 1s apprecil-
able, With such samples, lateral profiles of transmittance as
well as of radiance are measured. However, currently avall-
able methods for mathematical analysis of such a system are
only applicable if the Beer-Lambert absorption law holds,
that is if local absorption coefficients are constant over the
spectral slit width employed. 1In this case, the measured
transmission r(x) at the position x is given by

1n T(x) = -g_f l(cig)_rxg)% dr . (4)

This equation has the same form as equation (2) and may be
solved for k(r) by any of the procedures used to solve
equation (2) for f(r).

The spectral radiance at the position x is given by




+¥, Yo
H(x) = f f(r) exp [ - I k(rt) dy!? ] dy . (5)
-3, y

Since k(r) is known, the exponential in equation (5) may be
evaluated and equation (5) then solved for f(r) (refs. 9 to
11). The temperature profile may be obtained from the
emission and absorption coefficients by using Kirchhoff!s
law, which says that their local ratio must be equal to the
Planck function at that wavelength and at the local
temperature.

Using this technique, Elder, Jerrick and Birkeland
(ref. 11) have reported obtaining temperature profiles with
4 percent precision throughout the region where r/R < 0.8.
The temperatures near the edge of their plasma were not
reported at all. This was because the absorption was too
small in this region to give adequately accurate results.
This lack of information at the edge of the sample is not
very important to plasma physicists but may be a serious
gap in ramjet studies. -

The requirement of applicability of the Beer-
Lambert absorption law prevents direct adoption of this
technique for ramjet measurements, All the lines in the
ramjet spectrum will be so sharp (order of 0.1 cm-l half
width) that the absorption coefficient will vary very
markedly over any practical spectral slit width.

(3) optical Isolation

a. Crossed beams.

Figure 3 1s a schematic i1llustration of a technique
used by Muntz (refs. 12 and 13) to measure temperatures in a
low pressure stream of nitrogen. An electron beam produces
nitrogen lons as it passes through the sample. Radiation
from these ions is then measured at frequencies where the
un-ionized specimen is optically clear. All of this meas-
ured radiation comes from a small volume (which may be con-
sidered isothermal) about the intersection of the electron
and optical beams,

The rotational temperature of a molecular emission
may be obtained by measuring the relative intensities of
the rotational line structure in the vibrational bands,
The vibrational temperature may be obtained by measuring the
relative intensities of various vibrational bands in the
emission., In order to obtain this information, it 1is neces-
sary to be able to predict the relative intensities in the



ELECTRON BEAM SOURCE

- DETECTOR

Fig. 3 Schematic for crossed beam method of temperature
profile measurement.

10




emission for arbitrary population distributions in the neu-
tral nitrogen molecules., The accuracy of the temperature
determinations depends on the accuracy of the theoretical
description of the excitation and emission process and, of
course, on the accuracy of the actual measurements,

Use of this method requires that the static pres-
sure be within about an order of magnitude of 1 mm Hg.

b. Local seeding.

A spectral region in which the sample 1s optically
clear may be made optically active locally by injecting a
suitable material (e.g. sodium or cesium) from a probe
(ref. 14), The probe should be located far enough upstream
of the optical path so that the flowing gas is not appreci-
ably disturbed or cooled, and allow the injected material
to reach the gas temperature. The temperature of the
injected material may be measured by the line reversal,
emission-absorption, or the two-line method. The tempera-
ture measured 1s that existing at the intersection of the
optical path and the stream of injected material.

B. Homogeneous (Gases

(1) Application of Band Models

Penzias and Maclay (ref 15) have determined Hy0
and COp concentrations in homogeneous gases from measure-
ments of infrared absorptance,

As mentioned earlier, the absorption coefficients
of the gases present in hydrogen-air flames all vary consid-
erably over practical spectral slit widths, In fact, spec-
tral slit widths of standard commercial spectrometers will
usually contaln many spectral lines, For such situations,
band models represent good quantitative relationships
between spectral transmittance and the temperature and com-
position of the sample,

The band model Penzlias and Maclay chose to use was
the random band model with constant line strengths and
widths. According to this band model, the transmittance
of a homogeneous gas over a spectral interval containing
many lines can be expressed as follows

-1lnt = 2n [ v/a | £(x) (6)

11



in which 7 is the transmittance, Y is the average line half
width and d the average line spacing in the spectral interval
considered. x is given by

AL (7)
QH[Y/d]

X =

in which S is the average line strength and ¢ 1s the length
of the optical path. The function f(x) is the Ladenburg and
Reiche function, whose mathematical properties are well
kxnown and whose values have been tabulated (refs. 16 and 17).

The average line half-width Y varies with the par-
tial pressure of the gases present as follows:

o o ~ '
Y = ¥y Py, 4 2 Ybi  Ppi (8)
1

where Yao is the half-width at unit pressure for self-

broadening (i.e. for collisions between two absorbigg mole-
cules) and P, 1s the pressure of absorbing gas. Y.~ 1s the

half-width at unit pressure for foreign gas broadening (i.e.
for collisions between absorbing molecules and other mole-
cules in the gas mixture which do not absorb radiation at
frequency v) and Pb is the pressure of the non-absorbing

line-broadening gas, The summation is over all species of
non-absorbing molecules.

The line strength is directly proportional to the
pressure of the absorbing gas, thus

P | (9)

Pa 1s the pressure of the absorber, and S° 1s the strength
at unit pressure.

12




The following step-by-step procedures can be
applied in determining the concentrations:

(1) Determine the geometrical path length 4 in cm.

(2) Determine the static pressure, Py, and the tempera-
ture of the phenomenon being investigated.

(3) Measure the absorptance of the species to be
determined, at the specifled frequency and spectral siit-
width of the band model parameters to be used,

(4) From a knowledge of the gas temperature, the
values of S°/d and Y°/d are determined from graphs similar
to figures 4 and 5.

(5) Using the information obtained in steps (1) through
(4), the following equations are solved for P_, the pressure

of the absorbing gas in atmospheres, which is the desired
result.

o
n %. _ (s¥/d) Pi L £(x) . (10)

(s°/a) p_ ¢

X = 5 5 . (11)

am [ Pa ;2 + (PT - Pa) ;2 }

The solution to the above equations requires iteration,
however, the number of cycles may be reduced by a Jjudicious
first choice of Pa’ based upon the theoretical concentra-

tions expected for the gas phenomenon,

Equation (11) assumes that all the foreign gas
broadeners in the specimen have the same Yg. This 1s a

good approximation for a hydrogen-air flame in which the
foreign gas broadener is almost all nitrogen., Oxygen and
hydrogen, which will be present in only small quantities
anyway, do have broadening powers that are similar to that
of nitrogen. 1In cases where a large amount of hydrogen or

13
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oxygen is present, a suitably weighted average Yg could be
used,

(2) Absorption of a Line Source

Kaskan (ref. 18) has shown that OH can be determined
by measuring the absorption in the ultraviolet QTT - Ez band.

This spectrum has been exhaustively analyzed Sref. 19) and a
convenient reproduction 1is available (ref. 20). The f num-
bers of a number of lines in the 3064&K 0-0 band have been
measured (ref. 21) and later corrected (ref. 22). Line
shapes indicating some pressure broadening in a mixture of
2Ha0 + Op at 1473°K have been reported (ref. 21), but it has
been shown, using the same data, that the pressure broaden-’
ing under these conditions is actually very small (ref. 23).
Consequently Kaskan assumed that the absorption lines have a
pure Doppler shape. The most important consequence of this
assumption is that with it the absorptlion coefficient
becomes independent of pressure.

The method used to determine OH was the line
absorption method in which a narrow emission line from a
discharge in water vapor is absorbed by the broader absorp-
tion line in the flame. This method requires that the line
shapes in emission and absorption be known; that the inte-
grated absorption coefficient be known; that the resolving
power of the spectrograph be high enough to separate the
lines to be used from all other lines, but it need not be
high enough to resolve the line shapes, This last require-
ment 1s easily met, but the other two are not. ‘

This method becomes particularly simple 1f the
source emission line is much narrower than the absorptlon
lines, so that it can be assumed that only the peak absorp-
tion coefficient is measured. This assumption is made 1n the
following development.

It can be shown that for those lines for which f
numbers (corrected) were measured

m

£, = 3.07 x 1077 A/(27 + 1) (12)

i

where AK is the relative transition probability tabulated for

all of the lines by Dieke and Crosswhite (ref. %9), and J
1s the rotational quantum number . in the .lower, ©n state, both

16




for the level i, From the definition of the f number it
follows that

[ on ] (EJ +1) | k, dv x 3.25 x 103 (13)

Ag

where [OHW{ is the number of molecules per cm3 in the

rotational level i, m and e are the mass and charge of the
electron, ¢ is the velocity of 1light, lﬂc\J is the absorption

coefficient in cm"l at the wave number v. The integral is
taken over the whole line, For a line with a Doppler shape
the integrated absorption coefficient is

[y av = 1,065 K, nvp (14)

where ko is the peak absorptlon coefficlent at the center

of the line and Awy 1s the width in em™! of the line at

half intensity. Combining equations (13) and (14)

[OH = I (2J + 1) k, Avp X 3. 46 x 105 . (15)
e‘ Ay

If rotational equilibrium exists

[OH}i = { [on]/ Q. y } (23 + 1) exp(-E,/RT) (16)

where [OHW is the total concentration of hydroxyl in the

2'IT'state, Qr v is the rotation-vibration partition func-
3

tion and Ei is the rotational energy of the level i. Com-

bining equations (15) and (16) and inserting the numerical
value of the constants

17




[oH] = (Q  k, Avpy/Ac) exp(E,/RT) 3.9% x 10 L (17)

Equation (17) as written can be used to calculate LOH‘ from the

results for any line., The partition functions were calculated
(ref. 24) by the equation

Qp,y = (kT/neB) XT exp(-E_/kT) (18)
n

where k is the Boltzmann constant, h 1s Planck's constant, B

is the rotational constant for OH taken as 18.51 cm'1

» and En
are the energles of the vibrational levels,

Temperatures may be obtained (ref. 24) from two
measured [OH}i values by using the formula

B
e S R (B, - Ey)/kT . (19)

[OH]J €;

s is the degeneracy of the energy level corresponding to Ei’

e Instrumentation

Instruments and components are avallable for optical and
-rectroscopic studies of ramjet combustion gases, in ground
tests and 1n flight. Commercial spectrometers can be used
sor the ground tests, with transfer optilcs designed according
Lo well~-known principles., Many such instrument setups have
veen bullt for application to similar problems. For example,
spectrometer systems have been successfully applied to meas-
are emission, to measure absorption, and to measure emission
and absorption simultaneously, in shock tubes (refs. 25 to
29), transient solid propellant flames (refs. 30 and 31), -
liquid propellant flames (ref. 32), jet engine combustion
zases (ref, 33), rocket exhaust gases (refs. 34 to 37), and
vlasmas (refs, 10, 11, and 38). 1In these various applications
many of the same instrument problems as are involved in the
supersonic ramjet application have been solved, 1in particular

18




the problems of short time for measurerent (microseconds to
milliseconds) and signal-noise ratio. Extending these same
methods to the ramjet requires adaptation of instruments
1ike those described in references 10, 11, and 25 to 38,
rather than solving any essentially ne v instrument problems.
The limitations on applicability of spectroscopic tech-
niques to the supersonic ramjet have to do with the nature
of the hot gas specimens themselves. Therefore, this study
is concerned with methods and principles, in relation to the
fundamental optical properties of the hot gases 1in a super-
sonic ramjet. When these problems have been seolved, 1t will
then be appropriate to consider instrumentation more
specifically. In the light of experience, no significant
limitation due to instruments is apparent. After a method
1s successfully developed, some instrument limitations may
become apparent, but even then there 1s no evidence that a
ma jor instrument development effort wiil be required later,
For example, the time required to make a measurement depends
on the signal/noise of a particular specimen, not on how
fast an instrument can operate. The speed capability of
present instruments is already beyond what 1s practical to
use for the ramjet application. Problems of access to the
hot gases (e.g. windows)are likely to prove more signifi-
cant obstacles than instrument problems, although here also,
access problems of comparable difficulty have been solved
(refs. 32, 39 and 40). Access problems will have to be
considered later, in relation to the engine configuration

to be used,

Consideration of limitations on flight instrumentation
was specifically excluded from this study (cf. Appendix,
paragraph #9). However, it is of interest to note that
many spectroscopic devices have been bullt for in-flight
measurements of radiation from rocket plumes and aircraft.
These include instruments for mounting on board a ballistic
missile in flight, to measure spectra of the exhaust plume.
These are rugged, miniaturized instruments, with provisions
for telemetering data to a ground station. Similar instru-
ments have been built for use in research aircraft, to
observe remote radiating phenomena., Examples of alrborne
zpectroscopic instruments may be found !r references 41 and

2.
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III., ADAPTATION OF OPTICAL MEASUREMENT TECHNIQUES
TO RAMJET STUDIES

A, Combination of Line Absorption and Spatial Scanning

1. Description of Method

In the line absorption method, with Doppler shaped
OH lines, if the emission line is much narrower than the
absorption line, it can be assumed that only the peak absorp-
tion coefficient is measured. 1In this case the measured peak
absorptance should follow the Beer-Lambert absorption law,
This 1s true even if the absorption coefficient of the
absorbing gas varies widely over the spectral slit width of
the spectrometer. The only requirement 1s that resolving
power of the spectrometer be high enough to separate the line
used from the adjacent lines,

As long as the Beer-Lambert law is applicable, a
radial profile of ko can be obtained for a radially symmetric

specimen. This is accomplished by measuring a lateral pro-
file of ko by spatial scanning and putting the result into

equation (4). This should be done with at least 2 lines
having widely separated J values., Temperature and OH con-
centration can then be obtained at any radius with equations
(19) and (17) respectively.

2. Output
a, Temperature proflles,
b. OH radical concentration profiles.

3. Specimen Requirement

a., Radial symmetry.

b. Temperature measurement requires local thermo-
dynamic equilibrium in rotational or vibrational energy
levels.,

c., Temperatures that are high enough to allow
sufficient concentrations of OH. Kaskan'!s specimens were
at about 1500°K. The lower temperature limit has not been
definitely established. For measurements of vibrational
temperatures, this lower limit would be higher than for
rotational temperature measurements because weaker bands
would have to be used,

20




4, Accuracy

Errors in the local values of k produce equal
fractional errors in [OH]i as can be seen from equation

(15). 1In Kaskan's transmittance measurements, the noise
levels were generally from one to five per cent of the
discharge signal but he felt that the averaging times were
sufficient to allow intensity measurements to one per cent
of the source signal. Elder, Jerrick and Birkeland claimed
4 per cent precision in their determinations of local
absorption coefficients by spatial scanning. Unfortunately
they did not report the precision of the transmittance
measurements involved in these determinations, If we

‘assume  that the precision of the transmittance measurements

made by Elder, Jerrick and Birkeland was similar to that of
Kaskan, we would conclude that 4 per cent precision in local

[OH‘]i determinations would be obtained with such measurement
precision,

Experimental errors become serious when the meas-
ured transmlittance is high because the noise level becomes
a large percentage of the absorption. On the other hand,
when the transmittance 1s very low, the finite width of the
source emission line becomes important leading to failure
of the assumption that the measured absorption is the peak

“absorption of the OH line. Therefore, good results can

only be obtained with lines whose transmittances are in the
intermediate region.

Additional errors will stem from inaccuracies in
the transition probabilities, The best OH transition
probabilities that are currently available have an esti-
mated accuracy of 15 per cent (refs., 43 and 44),.

The accuracy of temperature measurements can be
estimated by means of a differentiation of equation (19)
which ylelds

d [OH]i / [OH]j _ By - Ey 4T

IEOH]i /[OH}J T T

where k it 0.695¢2 em1 deg°1.
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This shows that the percent error in the measured
temperature is proportional to the percent error in

[OH]i / [OH}J and inversely proportional to (E, - EJ)/ kT,

If E'j ahd Ei‘represent different rotational energy

states of the same vibrational level, their difference will
be of the order of 100 cm~l, Vibrational state differences
are about 3000 cm~l, Therefore, vibrational temperatures
will have smaller experimental errors and rotational tempera-

tures greater experimental error than the [OH]i [OH]J ratio
for the expected temperature range in the ramjet. This ratio,
in turn, 1s likely to be a little more accurate than [OH]
because of cancellation of systematic errors,

5. Availability of Technology

a, Spectroscopic instrumentation technology is
avallable.

b, Spectroscopic parameters,

At the present time f numbers have been meas-
ured for the 0 - 0 band of OH (refs, 43 and 44), These
could be used for OH concentration and rotational temperature
measurements, Determinations of transition probabilities for
other bands would be needed for measurements of vibrational
temperatures,

¢. Theory.

In 1ts simplest form, the necessary theory is
Just a consolidation of several theories that already exist
and should require little development. However, profile
measurements must be expected to be more sensitlive to exper-
imental or theoretical errors than are the measurements on
homogeneous systems. Therefore, it may be desirable to work
out corrections for the small amount of pressure broadening
present and for the finite width of the emission line,

B. Development of a Method for Analyzing Spatial Scanning
of' Absorptance and Radlance of Flames

1. Description of Method

Available methods for analyzing spatial scans have
been developed by plasma physicists who have found the Beer-
Lambert law suitable for their media, As indicated earlier,
this law 1s not applicable to combustion gases for practical
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spectral slit widths. On the other hand, band models are
available that do represent the absorptance of combustion
gases fairly well. Development of methods for analyzing
spatial scans of flames using absorption laws based on band
models seems feasible,

Band models themselves apply to homogeneous spec-
imens only. However, they can be extended to inhomogeneous
systems by the Curtis-Godson method (ref. 45). Meteorolo-
glsts uce this method for inhomogeneous atmospheric gases
and it has recently been proven sultable for hot combustion
products (ref. 46).

Once such a method is developed, optical, chemical
and thermal aralyses of radially symmetric flames should
become possible as a general rule. In applying this method,

it would probably be necessary to know S9/d and Y°/d as a
function of temperature for the working molecule.

2. Output
a, Temperature profiles,
b. Concentration profile of the working molecule.

3. vSpecimen Requirements

a, Radial symmetry.

b. Presence of a working molecule with adequate
optical activity.

¢. Local thermodynamic equilibrium for working
molecule.

4, Accuracy

Accuracy of spatial scan analysis would depend on
the accuracy of the absorption law and on the wavelengths
studied. The wavelength affects the accuracy of the result
in two ways:

(1) The relative variation of the Planck function with
temperature is different at each wavelength and the
accuracy of temperature determinations increases with this
relative variation.

(2) Also, the limiting accuracy of spectral measure-
ments varies with wavelength,

Again let us use the sodium D line (.59u) measure-
ments of Elder, Jerrick and Birkeland for comparison. The
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slope of the Planck functicn at 2000°K and 0.59u 1is 0.62 per
cent per degree. At the same temperature it is 0,15 percent
per degree at 2.5u where water vapor is optically active and
1,27 percent per degree at 0.3u where OH i1s optically active,
On this basis alone the 4 percent precision in temperature
measurements reported by Elder, Jerrick and Birkeland should
become about 16 percent for measurements made at 2.,5u and

2 percent for measurements made at 0.3u.

Instrumental errors are greater in the ultraviolet
and infrared than in the visible, Consequently, temperature
profiles extracted from measurements at 0,3 and 2,5u would
be somewhat less precise than indicated in the preceding
paragraph,

5. Availability of Technology

a. Spectroscopic instrumentation technology 1s
available,

b. Working molecules,

The ramjet may or may not contain a sultable
working molecule. Ho0 and OH are possibilities. According
to the information in the appendix of this report, the
specimen size may vary from 1/2-inch to 24 inches and the
static pressure will be generally in the range from 3 to O.1
atmospheres, with the largest path and lowest pressure
corresponding to conditions at the nozzle exit. For a
specimen at 5000°R with a pressure of 3 atmospheres and
5 inch path, which may be representative of conditlons some-
where in the combustor, current available data indicate that
enough Hz0 and OH should be present so that either one might
serve as the working molecule. For a specimen at 2800°R
with a pressure of 0.1 atmospheres and 24 inch path, repre-
sentative of conditions at the nozzle exit, indications are
neither H,0 nor OH would have enough optical activity. At
this time our knowledge of the requirements of the method
and the spectra of the molecules are inadequate for a
definite determination. If both these molecules prove
inadequate, seeding should be consldered.

c. Spectroscoplc parameters,

Band model parameters for the working molecule
would have to be obtained.

d. Theory.
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A considerable amount of development of mathe-
matical techniques is required.

C. Combination of Spatial and Spectral Scanning

l. Description of Method

It was noted in Section II that spatial scanning
results are very inaccurate at the edge of the specimen.
On the other hand, the results of spectral scanning are
best at the edge of the specimen. Therefore, a combination
of the two techniques should give good picture of the
entire system.

2. and 3. Output and Specimen Requirement

Same as Method B,
4, Accuracy
As stated above, adding spectral to spatial scan-
ning should improve the ~2lready analyzed accuracy of the
latter. The extent of this improvement depends on the
suitability of the working molecule or molecules,

5. Availability of Technology

The technology for this method is very similar to
that of Method E. Here we will only consider requirements
that have not already been given for Method R,

a, Spectroscopic instrument technology is avail-
able,

b, Spectroscopic parameters would be needed at
many. wavelengths.

.¢c. Theory.
Once the theoretical development of Method B
is complete, combining it with avallable spectral scanning
techniques should be a fairly straightforward problem,

D. Seeding

1. Description of Method

Local seeding 1s accomplished by injecting a sult-
able optically active material (e.g. cesium or sodium) from
a probe into the gas stream. The probe should be located
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far enough upstream of the optical path so that the flowing
gas 1s not appreclably disturbed or cooled, and to allow the
injected material to reach the gas temperature.

In the emission-absorption method, emission and
absorption of the sample are measured for one spectral inter-
val. This interval may contain any number of lines and
involve any amount of self absorption without damage to the
measurement accuracy. In the two-line method, only emission
is measured but it must be done for two wavelength intervals,
Moreover, a single line must be isolated in each of these
intervals and self absorption must be carefully avoided,

Sodium is the most popular seeding material.
Buchele (ref. 14) introduced sodium into hot gas streams, in
the form of sodium bicarbonate powder, for line reversal ‘
measurements., At pressures below 20 atm. his injJection rate
W was

W Cy My/p

1 -1

where C, = 0.16 g atm in ~ min ~, M is Mach number, p static

pressure; and y, the diameter of the cylindrically shaped
stream of sodium vapor. With p equal to 1 atm and y equal

to one inch this formula yields a molar density of 1.5 x 10~

moles/cc of sodium or a sodium mole fraction of 0.25 x 10 .
This would be a reasonable concentration for line reversal or
emission-absorption measurements with resonance lines of any
alkali metal. The concentration can vary quite widely with-
out affecting the accuracy of these measurement techniques,

10

When the two-line method is used, the quantity of
optically active material is much more critical. Tables I,
IT, and III 1list emisslion intensity ratlos of lines of
lithium, iron, and sodium, respectively, that are sultable
for two-line measurements. The proportionality constant
needed to calculate absolute line intensities from the data
given 1in these tables is the same for all lines of a given
element, It cancels in the ratio, These ratios are valid
only when there is no self absorption, The importance of
self-absorption can be illustrated by considering the line
ratio for sodium given 1in Table III. The resonance line has
been used in computing the ratios. Although the ratios are
theoretically possible, they may not be achievable in prac-
tice because self-absorption cannot be eliminated and the
ratio will approach unity. In order to limit self-absorption
as much as possible, the concentration of 1ithium or iron
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TABLE I

Emission Intensity Ratio for 2 Lithium Lines

A = 1.2 x 14904 exp [ 6-%%%%% ]
a Intensity of l1line at 14904 em™t
B = 13 x 16379 exp[%—%%%%%—]
o Intensity of line at 16379 cm™t
T(°K) A B A/B
1500 13.8 x 1073 2.01 x 1078 6.87 x 10°
2000 | 39.9 x 102 | 3.64 x 107 10.9 x 10°
2500 33.7 x 1071 3,28 x 1073 10.3 x 10°
3000 | 14.1 6.58 x 1072 2,14 x 10°
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TABLE

II

Emission Intensity Ratio for 3 Iron Lines

C = 0.0031 x 23711 exp [ 5-%8%%% ]
D = 27 x 23694 exp [6—2%%‘-;]
E = 38 x 23648 exp[g—.-ggg-g—]

T( °K) C D E c/D C/E
1500/97.8 x 107°|86.0 x 10718|81.6 x 10-17 1.13 x 108]1.19 x 107
2000{28.9 x 1077 |24.3 x 10712|14.8 x 10-11 1.14 x 10°]|1.95 x 10H
2500[87.5 x 107 |48.0 x 1079 21.3 x 10 [1.82 x 103|4.11 x 102
3000{84.7 x 107 |74.1 x 10°7 |27.2 x 1076 1.14 x 10°3.11 x 10!
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TABLE III

Emission Intensity Ratio of 3 Sodium Lines

F = 0.90 x 16956 exp [ 57%8322 ]
o Intensity of line at 16956 em™1
G = 1.8 x 16973 exp [ 6?%%%%% j
a Intensity of line at 16973 cm™*
H = 1.8 x 17576 exp [ 57%32%%']
o« Intensity of line at 17576 em1
T( °K) F G H F/H (F+G)/H
1500{1.324 x 1073|2.609 x 1073 1.293 x 1071°|1.024 x 107)3.042 x 107
2000{7.715 x 1072{1.526 x 1071{5.115 x 1077 |1.508 x 10| 4.492 x 165
250018.843 x 1071{1.753 7.366 x 1072 |1.201 x 10” 3.580 x 10*
30001 4,495 8.928 2,023 x 1073 |2.222 x 105]6.635 x 10°
i
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should be adjusted so that the weaker of the two lines used
has the minimum intensity necessary for accurate measurement.
Self-absorption by the stronger line would then be minimized,
and the large size of the thermal variation of the intensity
ratio might overcome it. 1In the spectra of lithium and
sodium, the lines are widely spaced and generally easy to
separate by filters., However, the two lines to be used are
in different regions of the spectrum and would require
different detectors with consequent calibration difficulties.
In iron the lines are close enough so that they could both
be measured with the same detector but this element has such
a rich spectrum that a spectrometer should be used,

Discussions with NASA personnel led to the sugges-
tion that the large difference in the intensities of the two
lines used 1in the two-line method (and the consequently
large self absorption of the stronger one) could be decreased
1f two seed materials in different concentrations were used
and one line of each material were measured. Suppose the

16379 cm™! 1ithium line and the 16956 and 16973 em™t sodium
line intensities were measured in a sample in which the

ratio of 1lithium to sodium concentration was 10°. The
ratio of the radiances of the lithium to the sodium lines
would be of the order of unity at 2000°K and would vary by
about three orders of magnitude between 1500°K and 3000°K.
It should be possible to segregate the lines used by means
of filters and theilr frequencies are close enough together
to allow making both measurements with the same detector.
However, the proportionality factor for 1line intensities is
not the same for lines of different elements and does not
cancel in the ratio because the partition functions is
different in each element. Therefore, their ratio must be
determined experimentally.

Of all the optical methods for obtaining tempera-
ture profiles, local seeding is the simplest 1in concept and
probably the most accurate. It can be used on any system
in which the mechanical introduction of the seeding material
can be managed and which would not be altered by the pres-
ence of the seeding material.

In some cases, total seedlng may be possible where
local seeding is not, If the specimen could be seeded with
a molecule whose absorptance follows the Beer-Lambert Law,
its temperature profile may be sought by the available
spatial scanning procedures, If the concentration of seed
material could be controlled, spectral scanning might yield
the temperature profile.
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2. Qutput

Temperature profiles,

3. Specimen Requirement

Seedability.

seeding.

a, Local
With reasonable care, temperatures can be

measured within about 20°K by the emissicn-absorption or the

line reversal method. The two-line method is less reliable,

b. Total seeding,

Spectroscopic measurements of totally seeded
specimens may be made by methods B, C or F. The accuracy
that may be expected of the resulting temperature profiles
is that described for these methods, '

5, Availability of Technology

a. Spectroscopic instrument technology is avail-

b. Sound choices of materials for local seeding
can be made with available information.

c¢. Adequate estimates of the required quantity of
additive can be made for emission-absorption or line
reversal measurements of a locally seeded specimen,

d. Two-line method temperature measurements
require an exacting determination of the optimum amount of
local seeding. It may prove best to make this determination
experimentally.

e. 1In the case of additives to be used for total
seeding, the presence of the special optical and chemical
properties desired must be sought and proven.

E. CrosSed Beams

1. Description of Method

Crossing the optical beam with an electron beam,
as described in Section II A, 3a, may be useful for plume
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measurements under high altitude conditions. The pressure
range within which an electron beam is operable 1is too
small to make 1€ generally valuable,

If the local ionization were produced by light or
X-ray beams, the crossed beam technique could be used at
much higher pressures, However, the increased pressure
would not only require a change in the excitation method but
would involve a completely different overall excitation-
emlssion process. For hls low pressure-low temperature spec-
imens, Muntz (refs. 12 and 13) was able to assume that the
exclted particle experienced no gas kinetic collision during
the process of excitation and emission. He was able to
Justify this assumption in the following manner:

For room temperature, number densities of the order

of 1.5 x 1016/cm3 (pressure 470u Hg, the maximum existing in
Muntz!'s experimentsg and assuming the diffusion collision

cross~section of 4,8 x 10—15 cm2, the time required to tra-
verse a mean free path at the mean speed of 475 m/s is

approximately 2 x 1077 sec, Bennet and Dalby (ref. 47) have
measured the mean life of the excited state of the (0,0)

band of N, + B2 Z:(the transition used in Muntz's measure-

ments) as 6.53 + 0.22 x 1078 seec. Thus, molecular colli-
sions will produce little interference with the electron
exclted emission of the N2 + B2 S'state. This description
of the excitation-emission path holds good until the
average free flight time of an excited particle compares
with the mean 1life of the excited state.

To the hard sphere approximation, the free flight
time of a molecule varies inversely with pressure and
directly with the square root of temperature. Therefore, at
470 mm Hg and 1200°K the time required_to traverse a mean
free path should be 2 x 10-3 x 2 x 10~7 or 4 x 10-10 sec.
The average excited ion would then undergo over 100 colli-
sions during its lifetime and its radiation should be ther-
mal,

Many other extensions of the crossed beam idea may
be possible., Radiation from beam excited states of the
neutral molecule may be as useful as that of ions. Also,
measurement of light from the beam after it is scattered by
the sample may yield information about the scattering mole-
cules. For instance, if Raman scattering is studied, the
intensities of single lines should lend themselves to




-analyses similar to that presented in Section II B for .
absorption of single OH lines. Detecting the small amounts
of energy produced by Raman scattering may be a problem but
this might be overcome by using a laser source. Rayleigh
scattering provides more energy and may prove useful for
measuring molecular densities. However, severe interference
~with measurements of Rayleigh scatteriny could be produced
by small amounts of dust. Preliminary @ asts of this
Rayleigh scattering technique have been made with pure

- E

gases (refs. 48 and 49).

2e Outgut

. Profiles of temperature and density of the working
molecule, -

3. Specimen Requirement

a. Presence of suitable working molecule,

: b, Suitable pressure., This is below 1 mm Hg for
studies that neglect collisions anc of the order of one
atmosphere or more if collision incuced equilibrium is
assumed, Intermediate pressures are not suitable for
either case, ’

4. Accuracy

Muntz has claimed accuracles of 2 percent, 10 per-
cent and 8 percent for rotational temperature, vibrational
temperature and nitrogen concentration respectively in
measurements made on rarefied gas at about room temperature
using electron beam excitation,

Recent papers on photolonization coefficients of
N> by Cook and Ogawa (ref. 50) and of Ho0 by Metzger arnd
Cook (ref. 51) did not give the accuracy of the results.
Thls precludes estimates of the accuracy of ccncentration
measurements based on this data,

If measured ionic radiation is thermal, the
accuracy of temperature measurements obtainable by local
seeding may be considered an upper 1limit to the accuracy
obtainable from measurements made on photoionized species,

5. Availability of Technology

a., Spectroscopic instrument technology is avail-
able,

b. Theory.
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For measurement of nitrogen density and tempera-
ture at low pressure by means of electron beam lonilzation,
the technique has been developed and used,

c. Spectroscoplic parameters.,
Nitrogen and water vapor cross sections for
photolonization by ultraviolet radiation have been measured.
Information about Raman intensities of gases is sparse,

F. Line of Sight Measurements

1. General Description

This method can be used as described in Part I if
the specimen requirement given below is met. Whether or not
this 1s so must be decided, for each experiment, by the
investigator.

In order to obtain a detailed picture of the tem-
perature and composition profile along a line of sight
through a hot gas from measurements made only along that
line of sight, the present state of the art requires that
the composition be a known function of the temperature.
However, when this condition is not fulfilled it is still
possible to obtain some information about the temperature
profile from line of sight measurements., This 1s done by
applying equation (la)., As stated in Section II A, this
formula gives a weighted average of the temperatures along
the line of sight with different weighting distributions at
each wavelength, Using an estimate of the wavelength
dependence of the welghting distributlons and a suitable set
of such weighted average temperatures measured at several
wavelengths, an estimate of the line of sight temperature
profile can be made, By such a procedure, Tourin and Krakow
were able to detect a small cold spot in a propane-air
flame and to estimate 1ts location (ref, 1).

There is another possible approach when only a
finite number of possible profiles exist. The emission and
absorption spectrum of the sample can be measured and com-
pared with the pre-determined spectra for each of the
possible profiles., If there 1s a substantial difference in
the various possible profiles there should be enough differ-
ence in the corresponding spectra to allow matching of the
measured spectrum to the proper pre-determined one.

2. Output

Profiles of temperature and concentration of the
working molecule,
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3. Specimen Requirement

o a. Concentration must be a known function of
~ temperature. ~ _

b. Presence of a working molecule with sufficient
optical activity.

4, Accuracy

The accuracy of line of sight temperature determin-
ations depends so strongly on the detail desired, slope of
the Planck function, slope of temperature vs, transmittance
curves, accuracy of temperature vs. transmittance curves,
accuracy of temperature vs., concentration curves, stability,
and measurement accuracy that general statements cannot be
made. Therefore, the discussion will be confined to a few
specific cases. First, the accuracy of line of sight tem-
perature profiles that have been obtained from measurements
of COp at 4,3y will be discussed. Consideration will then
be given to how this accuracy 1s likely to change when the
input data are changed to measurements of water vapor at
2.5 or to measurements of OH radicals at 0.3u.

At 4.3u and 2000°K, the relative slope of the
Planck function i1s only 0.10 percent per degree. However,
CO» transmittance varies so strongly with temperature and
wavelength .that the small Planck function slope could be
overcome by Judicious choices of wavelengths. In the
demonstrations of the method that have been made, measure-
ment precision was characterized by mean transmittance
deviations of .01 and relative mean radiance deviations of
2 percent in typical measurements., The transmittance
curves used were prepared from data of similar precision.
Also, in these tests very stable laboratory speclmens were
used and errors in concentration curves were of negligible
importance., In two and three zone examples involving
temperatures between 1400°K and 2800°K, zonal temperatures
were determined with errors of less than 100°K (ref. 3).

Accuracies comparable to those of the COp measure-
ments just described may be expected for temperatures
determined from measurements made at 2,5u using Hz0 as the
working molecule. As far as the spectroscopic measurements
themselves are concerned, an improvement that might be
brought about by the better detectors available for the
2.5u region would probably be nullified by greater atmos-
pheric interference and need for higher resolution. In
calculating temperatures from the spectroscoplc data we
would be helped by a slightly larger Planck function slope
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but hindered by a smaller variation of transmittance with
temperature. 1In short, the wavelength is slightly better
but the working molecule worse. 1In fact, for small speci-
mens, the optical activity of H,0 may prove too weak to
allow its use,

The molecule OH 1s active near 0.3u. The relative
Planck function slope at 2000°K 1s over twelve times as
steep at 0.3u as at 4.3u. This fact should dominate the
comparison of accuracies, Detectors at 0.3u are much better
and may overcome the lower radlances, greater amounts of
stray light, greater calibration difficulty, and the
increased l1light scattering at this wavelength to make the
spectroscopic data as good as at 4.3y, Therefore, if all
chemiluminescence has decayed before the gas reaches the
point of measurement, temperature profiles obtained from
spectral radlances in the 0.3u region should be much more
accurate than studies using measurements at around 4.3p
because of the larger relative Planck function slope.

Of course, this greater ultimate accuracy could be
traded for greater detail, roughness in temperature vs,
transmittance curves, or sample instability,

Estimates of the line of sight temperature profile
made in the absence of temperature vs. transmittance curves
are quite rough. Only a general idea of the nature of the
profile can be obtalned in this case,

5. Availability of Technology

a. Spectroscopic instrument technology is avail-

able,
b. Working molecules:
| Hz0 and OH may be suiltable,
c. Spectroscopic parameters,
These would have to be obtained for the working
molecule,

d. Theory,

Mathematical techniques are available,
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IV, RESEARCH REQUIRED

A, Evaluation of Working Molecules

1. OH Chemiluminescence'

Of all the molecules produced by hydrogen-air
flames, OH is the one whose optical activity has the most
favorable wavelength and intensity for analysis of its
thermal radiance., 1In fact, it may prove to be the only
suitable working molecule 'in many specimens. However,

- before making such analyses, one must ascertain that the
measured radiance is indeed thermal,

The rate at which OH chemiluminescence decays 1is
uncertain, All studies that have been made on the subject
have 1nvolved temperature gradlents along the line of sight
and been based on assumptions about line shapes, f-numbers,
vibration-rotation interaction and rate constants that have
made the results inconclusive, The differences of opinion
on the subject are illustrated by the results of Kaskan
(ref. 18), Zinman and Bogdan (ref. 52), and Zeegers and
Alkemade zref. 53). Kaskan's line absorption measurements
using the f numbers of Dieke and Crosswhite indicated that
non-equilibrium persisted for a long distance downstream of
a hydrogen-air flame. Zinman and Bogdan found that the
radiance of the gas above hydrogen-air flames was consistent
with thermal equilibrium if the f numbers were corrected for
vibration-rotation interaction as directed by Learner but
this was not true if James! corrections for vibration-
rotation interaction were used, Recent kinetic calculations
by Zeegers and Alkemade indicated considerable OH chemilum-
inescence above acetylene-air flames, While the majority of
papers on this subject indicate that chemliluminescence pro-
duces serious distortions of OH radiance measurements, the
results are still questionable. Because of the potential
power of OH radiance as a thermometer, this gquestion should
be resolved,

Estimated Effort: 4 man years

2.  Molecules for Total Seeding

Molecules to be used for total seeding should have
a high spectral absorptance at a suitable wavelength and
this absorptance should vary in accordance with the Beer-
Lambert absorption law for measurements made with practical
spectral slit widths. The optimum spectral region for the
measurement of temperatures of about 2000°K would be the
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visible or near infrared. The presence of these properties
should be sought and proven 1n selected materials,

Estimated Effort: 4 man years

3, The practicability of producing optical isolation by
means of radiation probes needs further investigatlon.

B. Spectroscopic Parameters

There is a general need for research into the spectro-
scopic properties of working molecules that may be used in
spectroscopic studies of hot combustion products. Data of

this type required for the techniques described in Part III
are:

1. f numbers for OH bands other than the 0-0 band.
Estimated Effort: 6 man years
2. OH band model parameters.
Estimated Effort: 2-4 man years
3. Hz0 band model parameters,
Estimated Effort: & man year per interval for
temperatures below 1300°K;
1 man year per interval for

temperatures above 1300°K

4, Seed material line strengths for 2 line method meas-
urements,

Estimated Effort: 2 man years

C. Theory

Theoretical studies needed for methods A, B, and C
described in Part III are:

1. Development of techniques for analyzing spatial scans
of radiance and absorptance of radially symmetric specimens
when the Beer-Lambert absorption law does not apply to the
working molecules.

Estimated Effort: 2 man years

2. Combination of spatial and spectral scanning,

Estimated Effort: 3 man years
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3. Development of machinery for correcting the line
absorption method for the finite width of the emission line
and for pressure broadening of the absorption line,

Estimated Effort: 3 man years

Each method should be tested in the laboratory.

Estimated Effort: 1 man year per method.
Possibly more for crossed
beam methods,

E. Organization of Research

Figures 6 and 7 illustrate a reasonable organization
of research programs and show how they lead to final
evaluation of the measurement methods proposed in this
report, Figure 6 deals with studies of OH and Hz0 which are
natural products of hydrogen-air combustion. This figure
centralizes two pivotal tasks: (1) détermination of OH
equilibrium, and (2) development of the theoretical tech-
niques required to apply spatial scanning methods and to
combine spatial and spectral scanning, What follows these
two tasks depends on the results of the OH equilibrium
investigation. If reason is found for believing that OH
radiance in a ramjet specimen will be thermal, then the OH
studies on the left side of figure 6 should be the first
application of the new theories for spatial scanning
developed in task 2. On the other hand, if the results of
task 1 indicate that OH radiance in a ramjet will be
substantially chemiluminescent, then the new theories would
be applied first to Hz0 in the manner indicated on the
right side of figure 6., The OH line absorption test should
be done in either case., Figure 7 shows research concerned
with molecules that are artifically introduced into the
sample, Three distinct programs are outlined -- one for
each of three introduction techniques,

V. CONCLUSIONS

The natural products of hydrogen-air combustion
include two molecules, Hy0 and OH, that are optically active
at suitable wavelengths for spectroscopic study. Tempera-
ture and composition profiles of these molecules may be
sought through measurement of their spectral absorptance or
radiance,
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Spectral lines of OH display an extraordinary resistance
to pressure broadening. This quality opens possibilities for
analysis of line absorption measurements of OH, OH concen-~
trations and temperatures have been determined in this way in
homogeneous gases, Methods have been developed to extend
this technique to obtain profiles of OH concentration and
temperature in radially symmetric inhomogeneous samples,

It is8 difficult to measure and interpret either the OH
or the HgO thermal radiance of the ramjet, In the case of
OH, chemiluminescence might interfere with the measurements,
For Ha0 the emissivity is low, hence hard to measure
accurately and hard to find sufficient variation of emissiv-
ity. For temperature measurements based on thermal radiance,
the optical activity of OH occurs at a much more favorable
wavelength than that of HpyO0., Interpretation of measurements
of spectral radiances of natural components of the specimen
in terms of thermodynamic parameters requires either radial
symmetry in the sample or a knowledge of the composition as
a function of temperature, For working molecules like H,0
and OH whose spectra consist of narrow, well-spaced lines,
utilization of radial symmetry would require some further
development of the available theories, which are designed for
continuous spectra, Guldelines for such a development have
evolved from this project,

Introductlon of a better working molecule than OH or H0
into the specimen could facilitate temperature profile meas-
urements greatly, especially if it can be accomplished
locally. Techniques for achileving this introduction involve
simple addition or production through interaction between a
natural constituent of the sample and an electromagnetic beam
crossing the line of sight of the optical measurement. The
crossed beam technique might also provide an avenue to chemi-
cal analysis of optically inactive components of the sample.
This report descrlbes several extensions of currently used
techniques that might help adapt them for ramJet study.

Research that is needed to increase capabilities for
optical measurement of temperature and composition profiles
of hot gases is of the following 3 types: (1) determination
of spectroscopic properties of potential working molecules,
(2) advancement of techniques for theoretical analysis of
optical measurements and ?3) experimental studies of new
measurement techniques.

Spectroscopic instrument technology is generally avail-
able for the optical measurements described in this report,
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APPENDIX

The following information was received from NASA in
response to questlons regarding the nature of the specimens
to be studied., This information and information obtained
from informal conferences with NASA personnel guided the
selection of approaches to the study problem,

1. The specimen size may vary from as small as a
passage height of 1/2-inch to as large as a diameter or
height of 24 inches depending upon the location along the
engine axis or station and the engine configuration.

2, The static pressure within the engine will vary
"with conditions (altitude, Mach number, engine station,
etc.) but will be generally in the range of 0,1 to about
3.0 atmospheres with the lowest pressure occurring at the
nozzle exit,

3. Static temperatures of the flow within the engine
will vary with conditions and the engine station. Generally
speakling, the static temperature will vary from about 1000°R
at the entrance to the combustor to a maximum of about
5000°R at the exit of the combustor. The static temperature
at the exit of the nozzle will be about 2600°R depending
upon flow conditions., The maximum total temperature of the
englne flow will be about 5900°R. Hydrogen gas will be
introduced into the combustor at a temperature in the range
of 1000°R to 3000°R.

4, The composition of the burned gases wi1ll of course
depend upon state conditions of the hydrogen-air mixture
before combustion and upon flow conditions during and after
combustlion. However, an order of magnitude indication of
the gas composition after combustion in the ramjet engilne
in mole fractions would be: Hp - 037467, H,0 - ,284133,
Np - 627622, OH - ,018113, 0, - ,011467, NO - .006787,

H - ,010481, 0 - ,003928, and N - ,000001. These values
were taken from NACA TR 1383, "Survey of Hydrogen Combus-
tion Properties", for equilibrium adiabatic conditions, an
equivalence ratio of 1, a static pressure of 1 atmosphere,
and an initial mixture temperature of 1800°R. Also, air was
assumed to consist of oxygen and nitrogen only in the molar
ratio of 1:3,7572. Operation of the ramjet engine is not
restricted to an equivalence ratio of 1 but may operate at
equivalence ratios less or greater than 1.

5. It 1s expected that temperature profiles across the
flow near the fuel injectors will be irregular and lack
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symmetry because of the introduction of fuel at discrete radial
and axial locations, Further irregularities and asymmetry may
occur from flow distortions caused by the engine inlet, Pro-
files may become "smoother" and more symmetrical as the flow
leaves the combustor and passes through the nozzle depending
upon whether or not operation of the engine at angles of
attack or yaw produces adverse effects in this part of the
engine.

6. It is expected that temperature and composition pro-
files will be stable over the time period available for meas-
urements. Reports on supersonic combustion experiments do
not indicate any combustion instability.

T. For flight tests, the time for measurements will be
restricted to 1 second or less because of nonsteady flight
conditions (accelerating or decelerating flight). Ground
tests wlill permit measurement times of up to 1 minute for
certain test conditions., However, it is required that meas-
urement time 1in ground tests be of the same order of magni-
tude as that for the flight tests,

8. Departure from equilibrium conditions within the
engine should be small, However, slnce the englne design
will not be optimized, the effect of small departures from
equllibrium on engine performance may be significant for
certain flight conditions,

9. Both ground and flight tests will be made on the
ramjet engine, It 1s preferred that the method or technique
of measurement be the same for both ground and flight tests,
However, the instrument itself need not be the same for both
flight and ground tests, The contractor should note that
ground tests will permit more detail testing procedures than
flight tests and that the primary use for an instrument whose
design is based on a feasible method for measuring temperature
and composition profiles by optical techniques will be in the
ground tests, Consequently, restrictions (such as slze, weight,
etc.) imposed by flight measurements should not unduly influence
the cholce of technique or the instrument design, It is felt
that once a probeless technique for measuring temperature and
composition profiles in a hypersonic ramjet becomes a reality,
it is only an englneering problem to adapt this technique to
flight testing., The answers to certain remaining questions
should be viewed with the above in mind,

10, The temperature and composition across the hot gas
path is to be considered,
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11. The main interest is in measurements within the
engine, although measurements in the exhaust plume are also
of interest., In ground tests "boilerplate" models of the
engine or engine components will be tested which will permit
measurements similar to that which can be made across the
exhaust plume., That is, measurements of the flow exiting
from an engine component, such as the combustor, will be made.

12, The best possible accuracy is, of course, desirable
but it is realized that the accuracy attainable in rw':anf‘l ce
will be less than that for ideal or laboratory conditions.
An accuracy of + 5 percent or less for temperature measure-
ments over the range of 2000°R to S5000°R should be a design
goal if the present state-of-the-art is less accurate than
this,

13, The accuracy of the composition profile data should
be sufficient to permit determination of small departures
‘from equilibrium conditions,

14, The use of solid probes in the engine flow passages
cannot be tolerated.

15, An electron beam may not be feasible in view of the
pressures existing within the engine.

16. An instrument that does not require seeding is pre-
ferred over one that does since introduction of alien
speclies, especially radicals, will adversely affect hydrogen-
alr reaction and recombination times,

17. Since probes cannot be tolerated within the engine
passages, local seeding by this method cannot be used.

18. Spatial scanning across the specimen 1is possible,
19, It may or may not be possible to evacuate or flush
the optical path., The fewer "complications" involved in

the application of the measurement technlque, the more
desirable the technique becomes.
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